
pypcom Documentation
Release latest

Chris NeJame

Oct 23, 2020

User Guide:

1 Why Use PyPCOM 3
1.1 Quick Example . 3

1.1.1 “What about the fixture?” . 4
1.1.2 “Couldn’t I do that with a normal POM?” . 4

2 Installation 5
2.1 Requirements . 5
2.2 Installing PyPCOM . 5

3 Pages 7

4 Components 9
4.1 Defining . 9

4.1.1 Adding Sub-Components . 9
4.1.2 Adding Custom Methods . 10

4.2 Entering Text . 10
4.2.1 Advanced . 10

4.3 Waiting . 11
4.4 Sub-Components and _find_from_parent . 12

4.4.1 Simple Example . 12
4.5 Deferring Attribute Lookups (Or “How does it do that?”) . 13

4.5.1 Why Descriptors? . 13
4.5.2 How does it support selenium methods/attributes like it does? 13

5 Using PyPCOM in Automated Tests 15
5.1 The Tests . 15

5.1.1 Quick Example . 15

6 State 17
6.1 How to Use . 17
6.2 How It Works . 18

7 ExpectedAttribute 19
7.1 Defining Your Own . 19
7.2 Provided ExpectedAttribute Classes . 20

8 Advanced Examples 23

i

8.1 Generic Component structures . 23
8.2 Iterable Structures . 24

Python Module Index 33

Index 35

ii

pypcom Documentation, Release latest

PyPCOM is a component based Page Object Model meant to work with Selenium, that is designed to make Page
Object development and maintanence significantly faster and easier, while at the same time making your structures
easier to work with and much more extensible and reusable. It does this by allowing you to break up your pages into
logical components with their own namespace and functionality, while still allowing you to treat every component as
if it were an element.

Still not convinced? Check out the Why Use PyPCOM section for a more detailed explanation on what PyPCOM
offers.

Ready to get started? You can jump to any of the sections in the user guide below.

User Guide: 1

http://seleniumhq.org/

pypcom Documentation, Release latest

2 User Guide:

CHAPTER 1

Why Use PyPCOM

This was designed to make writing page objects extremely fast and simple. Because Pages and Components are both
classes, making templated structures to build off of and inherit from is incredibly easy.

It even allows you to shorten and simplify the locators you use for sub- components by letting you have the sub-
component search within its parent- component only. That way you don’t have to worry about having incredibly long,
fragile, and hard-to-maintain locators.

Everything is based around classes and descriptors, so the components you make can be easily inherited from to
extend their functionality or reused. This also makes writing fixtures and tests easier because you can focus more on
the behavior and state of each components, and abstract the cumbersome details into the code of each component.

Debugging, abstraction, and documentation are all also easier because you now have the capability to deal with the
different sections of a page individually and can compartmentalize the logic into different classes and methods.

Are you using a framework with templates to build your frontend, and/or have a lot of common strutures in the HTML?
You can use this model to create component templates yourself, enabling faster, easier, and more manageable page
object development.

1.1 Quick Example

Login pages are very common, and the functionality is almost always the same. You can almost always expect a
username field, a password field, and a submit button. Submitting the form should be a straightforward task. So here’s
how PyPCOM can be used to set up this structure:

class Username(PageComponent):
_find_from_parent = True
_locator = (By.ID, "username")

class Password(PageComponent):
_find_from_parent = True
_locator = (By.ID, "password")

class LoginForm(PageComponent):
(continues on next page)

3

pypcom Documentation, Release latest

(continued from previous page)

username = Username()
password = Password()
_locator = (By.ID, "loginForm")
def fill_out(self, username, password, **kwargs):

self.username = username
self.password = password

class LoginPage(Page):
form = LoginForm()
def login(self, **credentials):

self.form.fill_out(**credentials)
self.form.submit()

Notice that both fill_out and submit are called on self.form inside LoginPage’s login method. This is possible because
you are able to treat components both as components with custom defined methods, as well as WebElement objects.
This is because PyPCOM defers attribute lookups to the WebElement object (assuming it can be found) if the
component doesn’t have the relevant attribute itself. However, if the WebElement object doesn’t have the attribute,
then it shows the component as not having that attribute.

1.1.1 “What about the fixture?”

The fixture would actually be quite easy to create, and it could be made to be parameterizable. Assuming you’re using
pytest, it would just look like this:

@pytest.fixture
def login(page, credentials):

page.login(**credentials)

And with that, you have something that allows you to provide whatever credentials you want. You can even change
the page fixture to give you a different page object that can handle whatever custom loggic is needed. The login fixture
can even be parametrized indirectly for other purposes.

1.1.2 “Couldn’t I do that with a normal POM?”

Yes, but, because of the compartmentalized structure of this approach, if you need to adjust how you log in because
of a different login form (e.g. maybe there’s an additional field, or the locators are different), you can still use almost
everything the LoginPage class by inheriting from it and just replacing the form component.

It may not seem like much of a benefit at this small of a scale, but for more complex pages, it can save you a lot of
effort and time.

4 Chapter 1. Why Use PyPCOM

https://www.selenium.dev/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement
https://www.selenium.dev/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement
https://www.selenium.dev/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement
https://docs.pytest.org/

CHAPTER 2

Installation

2.1 Requirements

PyPCOM is designed to work with Selenium, and as a result, depends on it for some things. Installing PyPCOM will
automatically install Selenium for Python as well, if you don’t already have it, so you shouldn’t have to do anything
extra to get it working.

2.2 Installing PyPCOM

Just like with most other Python packages, you can install it from PyPI using pip:

pip install pypcom

You can also install it from the source:

python setup.py install

5

http://seleniumhq.org/
http://seleniumhq.org/
https://pip.pypa.io/

pypcom Documentation, Release latest

6 Chapter 2. Installation

CHAPTER 3

Pages

While Components represent the heart and soul of this POM, Pages are what everything builds to. Pages are what
you’ll be using in your tests directly (with some exceptions depending on what’s needed), while Components are the
structures that manage the inner workings of the pages, doing all the heavy lifting. But Pages provide the API that
reads like the general behaviors taking place.

For example, if it’s a login page, then your Page should have a login() method that fills out the login form and submits
it.

The Pages themselves are what make your tests readable and allow you to tuck away all the complicated actions
involved with a “simple” behavior, so the only thing left is a single method that reads like a sentence.

The Page classes themselves are the top level of the descriptor hierarchy. Where Components can be both manager
classes and descriptor classes, Pages can (and should) only be managers, managing the upper most Component struc-
tures.

What they look like will vary greatly depending on the page they are meant for, but here’s a quick example for a login
page:

from pypcom import Page

class LoginPage(Page):

login_form = LoginForm()

def login(self, username: str, password: str):
self.login_form.fill_out(username, password)
self.login_form.submit()

7

pypcom Documentation, Release latest

8 Chapter 3. Pages

CHAPTER 4

Components

These are the heart of soul of this framework.

At a very basic level, components are just classes that have a locator for a specific element, and get used as descriptors
in pages or other components. When referenced, they can be treated as though you are referencing the WebElement
they’re associated with. That means you can reference their .text property or .is_displayed() on them. You can even do
this for a component that has sub-components of its own.

But they offer much more convenience than that. You can read below on how they work and how you can get the most
out of them.

4.1 Defining

Defining a component is ver straightforward. All you need to do is make a class that inherits from PageComponent
(or PC for something shorter), and give it a locator that can be passed to .find_element(). It would look something like
this:

from PyPCOM import PC

class MyComponent(PC):
_locator = (By.ID, "my-id")

4.1.1 Adding Sub-Components

If you want to add sub-components to it, it’s identical to adding a component to the page class. You just need to add it
like a decorator:

class MySubComponent(PC):
_locator = (By.ID, "my-other-id")

class MyComponent(PC):
(continues on next page)

9

https://www.selenium.dev/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement

pypcom Documentation, Release latest

(continued from previous page)

_locator = (By.ID, "my-id")
my_sub_component = MySubComponent()

To put MyComponent in a page class, you can then just add it in like you normally would:

class MyPage(Page):
my_component = MyComponent()

You can then reference the normal WebElement attributes/methods and the sub-component like this:

page.my_component.is_displayed()
page.my_component.text
page.my_component.my_sub_component.is_displayed()
page.my_component.my_sub_component.text

4.1.2 Adding Custom Methods

Adding in custom methods is just as easy:

class MySubComponent(PC):
_locator = (By.ID, "my-other-id")

def do_more_things(self):
do more stuff
pass

class MyComponent(PC):
_locator = (By.ID, "my-id")
my_sub_component = MySubComponent()

def do_something(self):
do stuff
pass

They can now be used just like the normal attributes and methods provided by WebElement and PageComponent.
This also doesn’t change how it works normally, so long as you don’t add any sub-components or custom methods
that would interfere with the normal WebElement or PageComponent methods/attributes.

4.2 Entering Text

Entering text is easy. For a given component, the locator just needs to point to the actual input element, and then you
can invoke send_keys() through the = operator like this:

page.my_form.my_input = "something"

4.2.1 Advanced

If you need to change how this behavior works, you can override the __set__ method in your component. Just make
sure you look at how it works normally, so you basically duplicate it, and only modify the part where it invokes
send_keys() to make sure it continues working as it needs to.

10 Chapter 4. Components

https://www.selenium.dev/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement
https://www.selenium.dev/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement
https://www.selenium.dev/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement

pypcom Documentation, Release latest

This approach will likely change in the future to provide a more convenient hook to override, but any additional hook
will not break a custom __set__ implementation if it copies the current one.

4.3 Waiting

Waiting is simple, too. You can either call PageComponent.wait_until() or PageComponent.
wait_until_not() on the component you want to perform the wait on, and pass it a string for the condition
you want to wait for. The three available conditions are “present”, “visible”, and “clickable”.

Here’s a quick example of its usage:

page.component.wait_until("visible", timeout=5)

It accepts strings that correspond to the normal expected conditions you’ve seen. But you can also reference expected
conditions you’ve defined yourself and attached to the PageComponent in its _expected_condition attribute. Here’s
an example of how it can be set up:

def custom_visible_condition(component):
def callable(driver):

return component.is_displayed()
return callable

class MyComponent(PC):
_locator = (...)
_expected_conditions = {

"custom_visible": custom_visible_condition,
}

and here’s how you’d use it:

page.my_component.wait_until("custom_visible")

You can also pass in the callable directly, like this:

page.my_component.wait_until(custom_visible_condition)

If you need to, you can provide additional keyword arguments for more flexible logic. Of course, you’ll have to
make sure you can handle it properly within the callable. For example, if you have some more advanced component
structures and need to perform a query that goes beyond normal selenium logic, you could implement a query method
(with whatever name you want, of course) and provide the necessary query details at the time the wait is executed.
This might be how your callable looks:

def custom_query_condition(component, **query_details):
def callable(driver):

return component.query(**query_details)
return callable

Then you could add it to the _expected_conditions dict attribute of that component, maybe as “com-
plex_component_present”, and invoke it like this:

page.my_component.wait_until("complex_component_present", **query_details)

4.3. Waiting 11

pypcom Documentation, Release latest

4.4 Sub-Components and _find_from_parent

Often, you will find yourself with long and convoluted selectors, simply because the element you want to find is in
some heavily nested node, and you have to repeat parts of your selector in many sub-components.

PyPCOM offers a solution to this that lets you simply search for a sub-component’s associated WebElement within
its parent component’s WebElement by calling find_element() on that instead of the driver. This allows you to
give the sub-component a locator that is relative to its parent component’s WebElement, so you don’t have to keep
repeating the common parts of the locator, and can instead create a simpler, cleaner, and more appropriate locator than
you might not have been able to otherwise.

To use it, all you have to do is set _find_from_parent to True in the class definition of the sub-component. The parent
components don’t need to be aware of this, so long as they have a _locator of their own.

4.4.1 Simple Example

Let’s say you have the following collection of elements somewhere in your page:

<div class='some-area'>
<div class='content-section'>

<p class='content'>Some text content.</p>
Some Link

</div>
</div>

To reliably find these elements, you might have to use a very lengthy locator involving references to both parent
elements. For example:

class MyImage(PC):
_locator = (By.CSS_SELECTOR, "div.some-area div.content-section img")

class SomeContent(PC):
_locator = (By.CSS_SELECTOR, "div.some-area div.content-section p")

class SomethingLink(PC):
_locator = (By.CSS_SELECTOR, "div.some-area div.content-section a")

class SomeContentSection(PC):
_locator = (By.CSS_SELECTOR, "div.some-area div.content-section")
my_image = MyImage()
some_content = SomeContent()
something_link = SomethingLink()

class SomeArea(PC):
_locator = (By.CSS_SELECTOR, "div.some-area")
some_content_section = SomeContentSection()

If you had to do that for several elements throughout all of your pages, that would get tedious very quickly and would
involve a lott of repeating yourself. Not to mention, this would also make all those locators fragile, and if they break,
it would take quite a while to fix each one.

Using _find_from_parent cuts out all that repetition and compartmentalizes your locator logic:

class MyImage(PC):
_find_from_parent = True

(continues on next page)

12 Chapter 4. Components

https://www.selenium.dev/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement
https://www.selenium.dev/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement
https://www.selenium.dev/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement

pypcom Documentation, Release latest

(continued from previous page)

_locator = (By.TAG_NAME, "img")

class SomeContent(PC):
_find_from_parent = True
_locator = (By.TAG_NAME, "p")

class SomethingLink(PC):
_find_from_parent = True
_locator = (By.TAG_NAME, "a")

class SomeContentSection(PC):
_find_from_parent = True
_locator = (By.CSS_SELECTOR, "div.content-section")
my_image = MyImage()
some_content = SomeContent()
something_link = SomethingLink()

class SomeArea(PC):
_locator = (By.CSS_SELECTOR, "div.some-area")
some_content_section = SomeContentSection()

For something a little more complex, check out Generic Component structures, or the other examples in Advanced
Examples.

4.5 Deferring Attribute Lookups (Or “How does it do that?”)

4.5.1 Why Descriptors?

PyPCOM works using descriptors for the components, but the only things it really uses that for are making sure a
reference to the driver and each component’s parent component/page is accessible, and to allow for convenient value
setting.

PyPCOM needs to make sure that, before it does anything, as a component is referenced (either through __get__ or
__set__), it grabs the reference to the driver from the managing instance, storing a reference to both the driver and
the instance in the component itself so that they can be referenced later on. For example, if you were to reference
something like:

page.some_component.another_component = "some text"

some_component would be referenced through __get__ and get a reference to the driver from page. It would also store
a reference to page as its parent. another_component would then be referenced through __set__ and get a reference to
the driver from some_component. It would also store a reference to some_component as its parent.

Descriptors also means classes will be used, so you can define custom behavior, inherit behavior from other compo-
nents, and re-use components as much as you want.

4.5.2 How does it support selenium methods/attributes like it does?

PyPCOM relies on the default attribute lookup behavior of objects in Python. If a class instance, or the class itself does
not have a certain attribute defined, then Python calls the object’s __getattr__ method (assuming it has one defined).

For components, when you reference an attribute of them, if the component instance has no such attribute, and neither
does its class, then the component instance attempts to find its associated WebElement and get the attribute from

4.5. Deferring Attribute Lookups (Or “How does it do that?”) 13

https://www.selenium.dev/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement

pypcom Documentation, Release latest

there. If the WebElement doesn’t have that attribute, then PyPCOM will tell you that the component doesn’t have
the attribute. If the component doesn’t have a _locator defined, or the WebElement can’t be located, PyPCOM will
raise an appropriate error.

Because there is a finite, established set of WebElement attributes, PyPCOM assumes that you must be looking for a
component’s attributes if it can’t find them on the WebElement. As a result, when it can’t find an attribute, the error
it raises will tell you that the component was the one without the attribute. This does not mean that it didn’t try to find
the attribute on the WebElement

14 Chapter 4. Components

https://www.selenium.dev/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement
https://www.selenium.dev/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement
https://www.selenium.dev/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement
https://www.selenium.dev/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement
https://www.selenium.dev/selenium/docs/api/py/webdriver_remote/selenium.webdriver.remote.webelement.html#selenium.webdriver.remote.webelement.WebElement

CHAPTER 5

Using PyPCOM in Automated Tests

PyPCOM was built around writing end-to-end/UI tests for websites, and, as a result, comes with several features to
make that process easier. While it will work within any Python testing framework, it was built with pytest in mind, so
examples and code snippets will be written assuming your test framework is pytest.

5.1 The Tests

PyPCOM comes with two handy classes to assist with writing tests: State and ExpectedAttribute. Using
them, you can check the state of a component against several things at once with only a single assert statement. If
you’re using pytest, it will also automatically provide an organized message of all the problems it found in the failure
message.

A State is used to compare against the component, while multiple ExpectedAttribute objects are passed to
the State when it’s instantiated. The ExpectedAttribute objects are responsible for knowing how to check
the values off the component and reporting any problems. The State is just there to manage the comparison of
each ExpectedAttribute against the component and generate a failure message for pytest to show in the failure
output.

5.1.1 Quick Example

Assuming you have all the page objects and fixtures defined, writing a test can be as easy as this (assume this is a
method inside a test class):

def test_some_component(self, page):
assert page.some_component == State(

IsDisplayed(),
Text("My Text"),
TagName("p"),

)

If the element was found to be displayed, but had different text and wasn’t a <p> tag, you would see a failure that
looks something like this:

15

https://docs.pytest.org/
https://docs.pytest.org/
https://docs.pytest.org/

pypcom Documentation, Release latest

Comparing SomeComponent State:
Text: "Something else" != "My Text"
TagName: "div" != "p"

The IsDisplayed, Text, and TagName classes you see all inherit from ExpectedAttribute. PyPCOM
comes with several baked in (see Provided ExpectedAttribute Classes for a full list), but the system is designed to
easily extended so you can add your own. For more detail on that, check out State or ExpectedAttribute.

16 Chapter 5. Using PyPCOM in Automated Tests

CHAPTER 6

State

State is used to bundle up multiple ExpectedAttribute objects so that they can all be checked against a
PageComponent with a single assert statement. The intent is to achieve the following:

• Maintain the best practice of only using a single assert statement per test test function/method, while still
allowing the test to check multiple things at once.

• Speed up and simplify writing complex tests for a page’s components.

• Make the code for tests more readable/writable and compact.

• Provide concise, readable output containing all problems should the test fail.

6.1 How to Use

Assuming you have all the page objects and fixtures defined, writing a test can be as easy as this (assume this is a
method inside a test class):

def test_some_component(self, page):
assert page.some_component == State(

IsDisplayed(),
Text("My Text"),
TagName("p"),

)

If the element was found to be displayed, but had different text and wasn’t a <p> tag, you would see a failure that
looks something like this:

Comparing SomeComponent State:
Text: "Something else" != "My Text"
TagName: "div" != "p"

The IsDisplayed, Text, and TagName classes you see all inherit from ExpectedAttribute. PyPCOM
comes with several baked in (see Provided ExpectedAttribute Classes for a full list), but the system is designed to
easily extended so you can add your own. For more detail on that, check out State or ExpectedAttribute.

17

pypcom Documentation, Release latest

6.2 How It Works

When you first make the State object, you pass it one or more ExpectedAttribute objects, which it holds onto.
The ExpectedAttribute objects are responsible for knowing how to check the PageComponent for any prob-
lems, and storing them for later reference. The State object runs through all the ExpectedAttribute objects in
it’s __eq__() method, and once all the ExpectedAttribute objects are checked against the PageComponent
object, the State object checks their results. If it sees that any problems were found, the comparison will just evaluate
to False.

For most testing frameworks, that’s as far as it will go. But if you’re using pytest_, then when it comes time for it
to print out the failure report, the State object will be used to generate a more readable failure report message by
having it compile the list of problems reported by each ExpectedAttribute object. It’s able to do this after the
tests have long since been evaluated, because each of the ExpectedAttribute objects hold onto their findings,
and the State object keeps a reference to each of them.

18 Chapter 6. State

CHAPTER 7

ExpectedAttribute

The ExpectedAttribute objects serve as a means of compartmentalizing the logic for both how to check for
something specific against a PageComponent, and how to summarize any problems found. You can pass any
number of ExpectedAttribute objects to a State object when you create it.

PyPCOM offers plenty of ExpectedAttribute classes out of the box, which can be found below. But the system
is designed to be customizable so you can inherit from the ExpectedAttribute class and define your own checks
along with how to report them.

7.1 Defining Your Own

In order to define your own ExpectedAttribute, all you need to do is make a class that inherits from
ExpectedAttribute, and then give it an __init__ and compare method.

The __init__ method can be used to accept any expected values you want the object to check for.

The compare method will be passed a reference to the PageComponent when it gets called by the State object
during the actual comparison. In that method, there’s three ways you can track problems you find, all of which are
equally recommended (so use whichever you find most appealing):

1. You can manually add problems you find using add_problem()

2. Use a standard assert statement, with an failure message attached (e.g. assert True is False,
"True is not False")

3. Raise an AssertionError manually with a provided failure message (e.g. raise
AssertionError("some failure message"))

If you choose the first option, it’s recommended that you stick with AssertionError``s, or at least
provide an object with a ``.message attribute so that ExpectedAttribute can find the problem’s
message in the way it normally does.

Here’s a quick example of a custom ExpectedAttribute, which is provided already in PyPCOM (with the doc-
strings removed, however):

19

pypcom Documentation, Release latest

class IsDisplayed(ExpectedAttribute):
_msg = {

True: "Element is not displayed when it should be",
False: "Element is displayed when it shouldn't be",

}
def __init__(self, expected=True):

self._expected = bool(expected)
def compare(self, other):

assert other.is_displayed() is self._expected, self._msg[self._expected]

7.2 Provided ExpectedAttribute Classes

class pypcom.state.expected_attribute.Href(expected=True)
Checks if the component has a certain href value or not.

Args: expected (bool): What href value the element should have.

compare(other)
Check the element’s href.

class pypcom.state.expected_attribute.IsDisplayed(expected=True)
Checks if the component is currently displayed on the page or not.

Args: expected (bool): Whether or not the element should be displayed.

compare(other)
Check if the element is displayed or not.

class pypcom.state.expected_attribute.IsEnabled(expected=True)
Checks if the component is currently enabled on the page or not.

Args: expected (bool): Whether or not the element should be enabled.

compare(other)
Check if the element is enabled or not.

class pypcom.state.expected_attribute.IsPresent(expected=True)
Checks if the component is currently present on the page or not.

Args: expected (bool): Whether or not the element should be present.

compare(other)
Check if the element is present or not.

The output will be one of the following:

IsPresent: Element is not present when it should be
IsPresent: Element is present when it shouldn't be

class pypcom.state.expected_attribute.Placeholder(expected=True)
Checks if the component has a certain placeholder value or not.

Args: expected (bool): What placeholder the element should have.

compare(other)
Check the element’s placeholder.

class pypcom.state.expected_attribute.TagName(expected=True)
Checks if the component has a certain tag name or not.

20 Chapter 7. ExpectedAttribute

pypcom Documentation, Release latest

Args: expected (bool): What tag name the element should have.

compare(other)
Check the element’s tag name.

class pypcom.state.expected_attribute.Text(expected=True)
Checks if the component has certain text or not.

Args: expected (bool): What text the element should have.

compare(other)
Check the element’s text.

class pypcom.state.expected_attribute.Type(expected=True)
Checks if the component is of a certain type or not.

Args: expected (bool): What type the element should be.

compare(other)
Check the element’s type.

7.2. Provided ExpectedAttribute Classes 21

pypcom Documentation, Release latest

22 Chapter 7. ExpectedAttribute

CHAPTER 8

Advanced Examples

PyPCOM is extremely powerful and flexible, but it might not be clear at first how that power and flexibility can be
leveraged. Here you’ll find a collection of structures and approaches that go beyond just having a straightforward page
structure. They’re are meant to serve as templates to be pulled from, or just inspiration.

8.1 Generic Component structures

Let’s say you have a common structure for your form control elements in all your forms where each field has an
<input> element and a <label> bundled inside its own <div>. It would look something like this:

<div class='form-field'>
<label for='first-name'>First Name:</label>
<input id='first-name' name='first-name' />

</div>
<div class='form-field'>

<label for='last-name'>Last Name:</label>
<input id='last-name' name='last-name' />

</div>

This would be tedious to have to define a label and input component for every field in your site. But you could create
a generic structure like this that you could reuse:

class Label(PC):
_find_from_parent = True
_locator = (By.TAG_NAME, "label")

class Input(PC):
_find_from_parent = True
_locator = (By.TAG_NAME, "input")

class FormField(PC):
label = Label()
input = Input()

(continues on next page)

23

pypcom Documentation, Release latest

(continued from previous page)

def __set__(self, instance, value):
self._parent = instance
self.driver = self._parent.driver
self.input = value

With that, you could just inherit from FormField to make a new class for each field, and it would even let you assign a
value to the input by setting the field component itself (i.e. page.form.my_field = “something”). You could even get a
little fancy with the locator to make sure you always find the right field <div>:

class FirstNameField(FormField):
_locator = (

By.XPATH,
(

"//div[contains(concat(' ', @class, ' '), ' form-field ')]"
"[input[@id='first-name']]"

),
)

class LastNameField(FormField):
_locator = (

By.XPATH,
(

"//div[contains(concat(' ', @class, ' '), ' form-field ')]"
"[input[@id='last-name']]"

),
)

That XPATH would locate a <div> that both has a single class of form-field and also contains an <input> with the
desired id. It won’t find the <input> itself; it just finds the right <div> that contains it. But that’s intended. This way
we know we found the element that contains only that <input> and its <label>, and we can let the FormField class
hold all the common logic.

8.2 Iterable Structures

Sometimes you’ll have some sort of structure that either doesn’t have universally consistent series of data, or it just
has an immense number of items. For example, a table of data with many rows.

Just building out all the components for each possible item in the series would be either extremely difficult (if not
impossible), or just plain tedious. Luckily, there’s a better way.

First, let’s say we have a table of cars, where each row is an individual car, and their make, model, year, and color are
provided, each in their own column. In this table, you can select each row, and delete them, thus deleting the record
of that car. There’s also a form just before this table, through which, new cars can be added to the table. Let’s also
say that every time the page is loaded, the table is empty, so if we want to have any cars listed, we have to add them
ourselves.

The HTML

Here’s some example HTML to represent this (let’s also assume there’s magic JavaScript that will just make this work
flawlessly):

24 Chapter 8. Advanced Examples

pypcom Documentation, Release latest

<form id="add-car-form" onsubmit="addCar()">
<select name="make" onchange="updateModels()" required>

<option value="" selected disabled hidden>--Choose a make--</option>
<option value="chevrolet">Chevrolet</option>
<option value="toyota">Toyota</option>
<option value="ford">Ford</option>

</select>
<select name="model" required disabled>

<option value="" selected disabled hidden>--Choose a model--</option>
</select>
<input name="year" required placeholder="year">
<select name="color" required>

<option value="" selected disabled hidden>--Choose a color--</option>
<option value="red">Red</option>
<option value="green">Green</option>
<option value="blue">Blue</option>

</select>
<button id="add-button" type="submit">Add car</button>

</form>
<button id="delete-button" onclick="deleteSelectedCars()">Delete</button>
<table class="carTable">

<thead>
<tr>

<th></th>
<th>Make</th>
<th>Model</th>
<th>Year</th>
<th>Color</th>

</tr>
</thead>
<tbody>

<tr>
<td><input type="checkbox" name="car" value="1"></td>
<td>Chevrolet</td>
<td>Malibu</td>
<td>1997</td>
<td>Red</td>

</tr>
<tr>

<td><input type="checkbox" name="car" value="2"></td>
<td>Toyota</td>
<td>Corola</td>
<td>2014</td>
<td>Green</td>

</tr>
</tbody>

</table>

The Tests

Now that we have the table’s HTML, we can get started on the code. To figure what our bottom-level code should be,
let’s look at how we want the tests to look. Here’s one example of how these could look:

@pytest.fixture(scope="class", autouse=True)
def page(driver, url):

driver.get(url)

(continues on next page)

8.2. Iterable Structures 25

pypcom Documentation, Release latest

(continued from previous page)

return CarTablePage(driver)

@pytest.fixture(scope="class")
def car():

return Car(CarMake.CHEVROLET, ChevroletModel.IMPALA, 1995, Color.RED)

class TestTableIsEmptyOnLoad:
def test_table_has_no_entries(self, page):

assert len(page.cars) == 0

class TestCarIsAdded:
@pytest.fixture(scope="class", autouse=True)
def add_car(self, car, page):

page.add_car(car)

def test_car_is_in_table(self, page, car):
assert car in page.cars

class TestCarIsRemoved:
@pytest.fixture(scope="class", autouse=True)
def add_car(self, car, page):

page.add_car(car)

@pytest.fixture(scope="class", autouse=True)
def remove_car(self, car, page, add_car):

page.remove_car(car)

def test_car_is_not_in_table(self, page, car):
assert car not in page.cars

That looks pretty straightforward and easy to read, but the question is how to achieve that. To find out, let’s keep
working backwards.

The Page

We can start by looking at the page class itself. This serves as the top-level abstraction for how we interact with the
page in terms of behavior, so it’s important that it provides us with a readable and useable API. It should have methods
that fully describe what were doing, so anyone reading it can follow along:

class CarTablePage(Page):
add_car_form = AddCarForm()
car_table = CarTable()

def add_car(self, car: Car):
self.add_car_form.add_car(car)

def remove_car(self, car: Car):
self.car_table.remove_car(car)

@property
def cars(self) -> List[Car]:

return self.car_table.cars

26 Chapter 8. Advanced Examples

pypcom Documentation, Release latest

The Add Form

The code is starting to take shape, and this is pretty self-explainatory, so let’s dig deeper, and look into how the cars
get added:

class SelectComponent(PC):
@property
def _el(self) -> Select:

el = self._reference_node.find_element(*self._locator)
return Select(el)

def __set__(self, instance, value: Any):
self.driver = instance.driver
self._parent = instance
self._select(value)

class MakeSelect(SelectComponent):
_locator = (By.CSS_SELECTOR, "[name=make]")
def _select(self, value: CarMake):

self.select_by_value(value)

class ModelSelect(SelectComponent):
_locator = (By.CSS_SELECTOR, "[name=model]")
def _select(self, value: CarModel):

self.select_by_value(value)

class YearInput(PC):
_locator = (By.CSS_SELECTOR, "[name=year]")

class ColorSelect(SelectComponent):
_locator = (By.CSS_SELECTOR, "[name=color]")
def _select(self, value: Color):

self.select_by_value(value)

class AddCarButton(PC):
_locator = (By.CSS_SELECTOR, "#add-button")

def count_greater_than(
component: PC,
count: int,

**kwargs: dict
) -> Callable[[RemoteWebDriver], bool]:

"""Given a number, checks that the car message count in the list is greater."""
def callable(driver: RemoteWebDriver) -> bool:

return len(component._parent.cars) > count
return callable

class AddCarForm(PC):
_locator = (By.CSS_SELECTOR, "#add-car-form")

make = MakeSelect()
model = ModelSelect()
year = YearInput()
color = ColorInput()
add_car_button = AddCarButton()

_expected_conditions = {
"count_greater_than": count_greater_than,

}
(continues on next page)

8.2. Iterable Structures 27

pypcom Documentation, Release latest

(continued from previous page)

def add_car(self, car: Car):
current_car_count = len(self._parent.cars)
self.make = car.make
self.model = car.model
self.year = car.year
self.color = car.color
self.add_car_button.click()
self.wait_until("count_greater_than", count=current_car_count)

Now it’s starting to get a bit more complicated, as it combines multiple advanced concepts. It first uses a generic
component that overrides the normal __set__ and _el logic so that Select can be used while the API it provides
remains consistent with other form control elements. Further down, it uses a custom wait function that has it rely on
its parent (in this case, the page itself) to see if the number of shown cars has changed.

This last step where it waits for the change in car count is essential so that anything leveraging that add_car method
doesn’t have to worry about any race conditions created by JavaScript that hasn’t had a chance to run (i.e. a change
was made to the DOM, so the thing changing it should wait for the DOM change to complete before moving on).

The Table

This is only one half of the page, though, so let’s look at the other half and see what’s going on inside the table
component itself:

class RowCheckbox(PC):
_find_from_parent = True
_locator = (By.CSS_SELECTOR, "td:nth-of-type(1) input")

class RowMake(PC):
_find_from_parent = True
_locator = (By.CSS_SELECTOR, "td:nth-of-type(2)")

class RowModel(PC):
_find_from_parent = True
_locator = (By.CSS_SELECTOR, "td:nth-of-type(3)")

class RowYear(PC):
_find_from_parent = True
_locator = (By.CSS_SELECTOR, "td:nth-of-type(4)")

class RowColor(PC):
_find_from_parent = True
_locator = (By.CSS_SELECTOR, "td:nth-of-type(5)")

class CarItem(PC):
_index = None
_find_from_parent = True
__locator = "tbody tr:nth-of-type({index})"

checkbox = RowCheckbox()
_make = RowMake()
_model = RowModel()
_year = RowYear()
_color = RowColor()

@property
def _locator(self) -> tuple:

(continues on next page)

28 Chapter 8. Advanced Examples

pypcom Documentation, Release latest

(continued from previous page)

return (By.CSS_SELECTOR, self.__locator.format(index=self._index + 1))

def __init__(self, index: int, parent: PC):
self._index = index
self._parent = parent
self.driver = self._parent.driver

@property
def id(self) -> int:

return int(self.checkbox.get_attribute("value"))
@property
def make(self) -> CarMake:

return CarMake[self._make.text.lower()]
@property
def model(self) -> CarModel:

return CarModel[self._model.text.lower()]
@property
def year(self) -> int:

return int(self._year.text)
@property
def color(self) -> Color:

return Color[self._color.text.lower()]

class DeleteButton(PC):
_locator = (By.CSS_SELECTOR, "#delete-button")

class CarTable(PC):
_locator = (By.CSS_SELECTOR, ".carTable")
_item_locator = (By.CSS_SELECTOR, "tbody tr")

delete_button = DeleteButton()

@property
def car_count(self) -> int:

return len(self.find_elements(*self._item_locator))

@property
def car_items(self) -> List[CarItem]:

return list(CarItem(i, self) for i in range(self.car_count))

@property
def cars(self) -> List[Car]:

cars = []
for car in self.car_items:

cars.append(Car(car.make, car.model, car.year, car.color, car.id))
return list(CarItem(i, self) for i in range(self.car_count))

def remove_car(self, car: Car):
self.car_items[self.car_items.index(car)].checkbox.click()
self.delete_button.click()

This does a small trick where instances of CarItem are given a reference to the driver, their parent table component,
and an index for the row they represent. They aren’t hooked up like a normal descriptor-based component, but they
don’t need to be as the driver and parent reference was passed down explicitely. All the parent table component needs
to do is figure out how many items (i.e. rows) it has, and create that many instances of CarItem, giving each one the
appropriate index (i.e. 0 to n), a reference to itself, and the driver. That’s all the information each instance needs to
still function properly (this is also why the _locator is a property).

8.2. Iterable Structures 29

pypcom Documentation, Release latest

Down at the bottom, there’s also car_items and cars, each one providing something similar, but very different. Having
car_items on its own gives us an easy means to access those components in the DOM, and giving them their own
properties that have meaningful values allows us to get fancier.

The Car

With that in mind, let’s take a look at the final chunk of code, and see the custom data types and enumerators that make
this whole operation tick:

class CarMake(Enum):
@property
def description(self):

return self.value.title()

CHEVROLET = "chevrolet"
TOYOTA = "toyota"
FORD = "ford"

class CarModel(Enum):
@property
def description(self):

return self.value.title()

class ChevroletModel(CarModel):
MALIBU = "malibu"
IMPALA = "impala"

class ToyotaModel(CarModel):
COROLA = "corola"
PRIUS = "prius"

class FordModel(CarModel):
FIESTA = "fiesta"
FOCUS = "focus"

class Color(Enum):
RED = "red"
GREEN = "green"
BLUE = "blue"

class Car:

def __init__(
self,
make: CarMake,
model: CarModel,
year: int,
color: Color,
id: int = None,

):
self._id = id
self.make = make
self.model = model
self.year = year
self.color = color

def __eq__(self, other):
(continues on next page)

30 Chapter 8. Advanced Examples

pypcom Documentation, Release latest

(continued from previous page)

if all(self._id is not None, other._id is not None):
return self._id == other._id

return all(
self.make == other.make,
self.model == other.model,
self.year == other.year,
self.color == other.color,

)

This lets us consider each car’s data independently of any implementation that uses this data by giving those imple-
mentations a means to store and work with the data in a common shape. We no longer have to worry about how a
specific method will be expecting the information for a given car, how a method might return such information, or how
to compare one car to another, because it’s all handled through this class, and the supporting classes are enumerators
to help streamline the development process. They act as a common language for every piece to talk to the others with,
and allow us to write such simple tests as the ones above.

The __eq__ in particular helps with several aspects of this example. It allows the comparisons with the instances of
CarItem, which in turns allows for things like self.car_items.index(car), because Python leverages __eq__ for a lot of
common operations.

8.2. Iterable Structures 31

pypcom Documentation, Release latest

32 Chapter 8. Advanced Examples

Python Module Index

p
pypcom.state.expected_attribute, 20

33

pypcom Documentation, Release latest

34 Python Module Index

Index

C
compare() (pypcom.state.expected_attribute.Href

method), 20
compare() (pypcom.state.expected_attribute.IsDisplayed

method), 20
compare() (pypcom.state.expected_attribute.IsEnabled

method), 20
compare() (pypcom.state.expected_attribute.IsPresent

method), 20
compare() (pypcom.state.expected_attribute.Placeholder

method), 20
compare() (pypcom.state.expected_attribute.TagName

method), 21
compare() (pypcom.state.expected_attribute.Text

method), 21
compare() (pypcom.state.expected_attribute.Type

method), 21

H
Href (class in pypcom.state.expected_attribute), 20

I
IsDisplayed (class in pyp-

com.state.expected_attribute), 20
IsEnabled (class in pypcom.state.expected_attribute),

20
IsPresent (class in pypcom.state.expected_attribute),

20

P
Placeholder (class in pyp-

com.state.expected_attribute), 20
pypcom.state.expected_attribute (module),

20

T
TagName (class in pypcom.state.expected_attribute), 20
Text (class in pypcom.state.expected_attribute), 21
Type (class in pypcom.state.expected_attribute), 21

35

	Why Use PyPCOM
	Quick Example
	“What about the fixture?”
	“Couldn’t I do that with a normal POM?”

	Installation
	Requirements
	Installing PyPCOM

	Pages
	Components
	Defining
	Adding Sub-Components
	Adding Custom Methods

	Entering Text
	Advanced

	Waiting
	Sub-Components and _find_from_parent
	Simple Example

	Deferring Attribute Lookups (Or “How does it do that?”)
	Why Descriptors?
	How does it support selenium methods/attributes like it does?

	Using PyPCOM in Automated Tests
	The Tests
	Quick Example

	State
	How to Use
	How It Works

	ExpectedAttribute
	Defining Your Own
	Provided ExpectedAttribute Classes

	Advanced Examples
	Generic Component structures
	Iterable Structures

	Python Module Index
	Index

